Поиск: 
Расширенный поиск | Последние запросы
FREE-REFERATS.ru

Банк бесплатных рефератов

Бесплатные рефераты > Темы > Математика > Реферат "Идея барицентрических координат"

Рефераты по Математика - "Идея барицентрических координат"

Страница: 1 2 3 4 5 6 7 8
Идея барицентрических координат
Скачать реферат "Идея барицентрических координат"
Содержание


Понятие о центре тяжести было впервые изучено примерно 2200 лет назад греческим геометром Архимедом, величайшим математиком древности. С тех пор это понятие стало одним из важнейших в механике, а также позволило сравнительно просто решать некоторые геометрические задачи.

Именно приложение к геометрии мы и будем рассматривать. Для этого нужно ввести некоторые определения и понятия. Под материальной точкой понимают точку, снабжённую массой. Для наглядности можно себе физически представить материальную точку в виде маленького тяжёлого шарика, размерами которого можно пренебречь. В связи с этим будем часто указывать только числовое значение той или иной физической величины, но не будем отмечать её наименование, считая, что оно само собой подразумевается. Например, выражение: «В ABC сторона BC равна a, а в вершине A мы помещаем массу a» означает: «Длина стороны BC равна a сантиметрам, а масса, помещённая в вершине A, равна a грамм».
Если в точке A помещена масса m, то образующуюся материальную точку будем обозначать так: (A, m). Иногда, когда это не может вызвать недоразумений, мы будем её обозначать одной буквой A. Массу m иногда называют «нагрузкой точки A».
Центром тяжести двух материальных точек (A, a) и (B, b) называется такая третья точка C, которая лежит на отрезке AB и удовлетворяет «правилу рычага»: произведение её расстояния CA от точки А на массу а равно произведению её расстоянию СВ от точки В на массу b; таким образом,

Image1.

Это равенство можно записать и так:

Image2,

то есть расстояние от центра тяжести двух материальных точек до этих точек обратно пропорциональны массам, помещённым в этих точках. Центр тяжести будет ближе к точке с большей массой. Из определения следует: если прямая проходит через центр тяжести двух материальных точек и через одну из них, то она пройдёт и через другую.

Центр тяжести двух материальных точек имеет весьма простой механический смысл. Представим себе жёсткий «невесомый» стержень АВ, в концах которого помещены массы а и b (рис. 1). «Невесомость» стержня практически означает, что его масса по сравнению с массами a и b настолько незначительна, что ею можно пренебречь. Центр тяжести С материальных точек (A, a) и (B, b) это такая точка, в которой надо подпереть стержень AB, чтобы он был в равновесии.


А         5        С                         15        B


рис. 2

Для дальнейшего полезно также ввести понятие «объединение» или равнодействующей двух материальных точек. Под этим мы будем понимать материальную точку, которая получится, если в центре тяжести двух материальных точек поместить массы обеих точек.



A         C        B
        


рис. 1

Пример. Пусть в концах невесомого тонкого стержня AB (рис. 2), длина которого равна 20 ед. Помещены такие массы: в A 6 ед., в B 2 ед. Центром тяжести материальных точек (A, 6) и (B, 2) будет точка C, лежащая на стержне AB, определяемая условием: 6CA=2CB, или CB=3CA. Поэтому АВ=CB+CA=4AC. Отсюда

Image3(ед.). Объединение материальных точек (A, 6) и (B,2) будет материальная точка (С, 8).
Центр тяжести трёх материальных точек находится следующим образом: находят объединение двух из этих материальных точек и затем ищут центр тяжести образовавшейся таким образом четвёртой материальной точки и третей из данных материальных точек.

Страница: 1 2 3 4 5 6 7 8

© 2003-2016 Free-Referat.ru - Рефераты, Курсовые, Дипломы, Доклады, Шпаргалки
Notice: Undefined index: r in /home/bitrix/ext_www/free-referat.ru/index.php on line 264 Notice: Undefined index: in /home/bitrix/ext_www/free-referat.ru/index.php on line 264